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Abstract

An action potential (AP) is an alteration in the mem-
brane potential of an excitable cell. It occurs due to the
size, shape, and type of cell excited. In literature, vari-
ous differential equation (DE) based mathematical mod-
els have been proposed to emulate APs. More recently, a
Fourier Series (FS) based technique has been proposed.
This paper discusses the methodology to identify the pa-
rameters of the FS model for eventual implementation on
an FPGA. Four DE models have been investigated. Two
implementation techniques - direct digital synthesis (DDS)
and double integrator based resonant model (RM) - have
been compared in terms of FPGA resource usage. Our ob-
servations show that the FS model is an attractive alterna-
tive to the DE models. The FS implemented using the RM
technique offers good accuracy with ease of FPGA imple-
mentation. The FS model has the potential for real-time
tissues level emulation on an FPGA.

1. Introduction

Action Potential (AP) is the universal language of the
nervous and the cardiac system. The size and the shape
of the AP are different for various cells [1]. Also, various
ions like sodium, potassium and calcium ions are respon-
sible for this phenomenon. Various mathematical models
based on the AP of neurons, ventricular cells and guinea
pig ventricular cells will be discussed further.

The pioneer cell model is the Hodgkin-Huxley (HH)
model [2] of a giant squid axon. This model has 4 vari-
ables, i.e., 1. Membrane voltage 2. Gating variables m, h
and j. Variables m and h are related to sodium ions. How-
ever, j is related to potassium ions. However, the Fitzhugh
Nagumo (FHN) model [3] is a simplified way of using the
earlier model. It has two variables, i.e., 1. The excitation
variable, v 2. The recovery variable, u. It has a variable, I,
which acts as the stimulus current.

Beeler Reuter (BR) model [4] describes the generic
model of the ventricular cell. It consists of 8 ordinary non-
linear differential equations. Six equations describe the
state of the gated channels. The other two equations in-
dicate the intracellular Ca2+ concentration and membrane

voltage,Vm. The BR model emphasizes the role of the slow
inward current (is) due to the plateau region formed in the
non-pacemaker cell caused by calcium ions. This model
has incorporated 4 currents in its equations, i.e.,1. An ini-
tial fast current, iNa 2. A secondary or a slow inward cur-
rent, is caused by the calcium ions 3. A time activated
outward current, ix1 4. Time dependant potassium current,
ik1.

Luo-Rudy I (LR I) model [5] is the mathematical model
of the ventricular cells of a guinea pig. It is almost similar
to the BR model. The various currents considered in these
equations are 1. Fast sodium current, INa 2. Slow inward
current, Isi 3. Outward currents.

Fenton Karma (FK) model [6] is the simplified model of
a ventricular cell. It is a generic model. The model com-
prises three non-linear differential equations. The three
variables are 1. Transmembrane potential, u 2. Two gat-
ing variables, v and w. The first differential equation is the
sum of 1. A fast-inward current, Ifi 2. A slow inward cur-
rent, Isi and 3. A slow outward current, Iso.

By changing the parameters of the models, the AP can
be altered. However, these require solvers in FPGA to take
more space. There also exists a physical limit to the num-
ber of cells produced in real-time [7]. A Fourier series can
be used to represent complex signals with good accuracy
and this has been used by Sehgal et al. [8] [9] in devel-
oping the Resonant Model (RM). The model is formulated
as,

V (t, k̄) = a0(k̄) +

N∑
i=1

ci(k̄)cos(ωi(k̄)t+ ϕi(k̄)) (1)

The coefficients a0(k̄), ϕi(k̄) and ci(k̄) can be constants
or could also be functions of an external condition k̄.

The proposed (RM) promises to alleviate both: the need
for ODE solvers and tissue size. However, an experimen-
tal verification of these benefits is yet to be demonstrated.
This paper presents the first steps in validating the claims
of ease of implementation together with accuracy of recon-
struction.

To establish whether RM has the ability to produce wide
variety of morphologies in cells, the existing biophysi-
cal models are arranged to produce periodic APs. Cells
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that require external stimulus require additional complex-
ity which will be investigated in another experiment.

2. Results

Figure 1. Schematic illustration of simulating a biological
cell by determining the coefficients of the Fourier Series
and emulating it on ModelSim.

3. Methodology

The first estimate of the model parameters (Fourier co-
efficients) are obtained using standard Fourier techniques.
The model can be optimised by using non-linear regression
[10][11] iteratively to reduce the number of parameters.

The methodology used to obtain the RM parameters are
illustrated in Figure 1 and explained below:
1. Select candidate cell: Identifying a suitable elctrophys-
iological dataset for the cell to be modeled.
2. Build model: Use the non-linear regression analysis to
find the best fit model coefficients using various method-
ologies in ModelSim.

(a) Obtain Fourier Series (FS) coefficient using Fourier
Spectrum Analysis.

(b) Use heuristics to identify a set of coefficients.
(c) Perform a non-linear fit.
(d) Determine the goodness of fit.
(e) Iterate to (b) if required.

3. Compare implementations: Convert the model param-
eters into formats required for the two implementation
methodologies: Direct Digital Synthesis (DDS), Resonant
Model (RM) and trigonometric/math functions in VHDL.

4. FPGA Implementation

The structure of the FS model is suitable for parallel im-
plementations or time-division multiplexing and two tech-
niques have been explored. The DDS technique is widely
used and also available in prefabricated integrated circuits.

Figure 2. (A) Schematic illustration of the Direct Digital
Synthesis (DDS) method. (B) Oscillator implemented with
two integrators in series producing sinusoidal waves. (C)
A waveshape generator implemented using 8 Fourier terms
in SIMULINK.

Our implementation in VHDL is based on the standard de-
signs. The RM methodology is better suited in specific
applications as in this case. Both require the model param-
eters to be converted into integer or fixed point formats and
hence the size of the binary word can also be a design fac-
tor. Both of these are amenable to FPGA implementation.

4.1. Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) generates periodic or
quasi-periodic waveforms using a Look-Up Table (LUT).
The DDS model is shown in Fig. 2 (A). This model con-
sists of Frequency Control Word (FCW) of 24 bits, adder,
phase accumulator, clock and LUT. The FCW determines
the frequency of the sinusoidal waveform to be simulated.
The LUT consists of points converted from floating-point
to fixed-point values of the sinusoidal waveform. The
phase of the waveform can be altered by changing the val-
ues in the phase accumulator.

The output of the phase accumulator is added with the
FCW using the adder. The new value of 24 bits is the out-
put of the phase accumulator. The first 10 bits of the new
value from the phase accumulator act as a LUT pointer.
The pointer selects the sinewave output of 16 bits from the
LUT. The use of DDS was optimized by using a single
LUT for multiple harmonic generators.

4.2. Resonant Model (RM)

Resonant Model (RM) eq 1, simulates AP waveforms of
autorhythmic cells and cells that require an external exci-
tation. The RM is based on the Fourier Series decompo-
sition mention in Section 2.1. It consists of a waveshape
generator and a state controller. The waveshape generator
consists of a sum of oscillators depicted in Fig.2(B) and
Fig.2(C). The input to the oscillator is related to the cell’s
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autorythmic frequency, and the oscillator’s output is the si-
nusoidal waveform generated as cicos(iωt+ϕ).

5. Results

The reconstruction of FitzHugh Nagumo, Beeler Reuter,
Luo Rudy and Fenton Karma models are compared using
three FS model structures i.e. with 4, 6 and 8 coefficient
(C) Fourier Series. Two performance metrics have been
used : ratio of RMS and R2 are used in this study. These
are tabulated in Table 1. RMSmat and RMSv are the ratios
of the RMS values of any two AP’s with zero DC. R2mat
and R2

v is the standard R2 metric. The formulation of these
parameters are shown below:
1. RMS ratio of the MATLAB reconstruction and the so-
lution of the models denoted as RMSmat. It is depicted as
in Equation.(2).

RMSmat =
rms(m)

rms(s)
=

√
1
n (m

2
1 +m2

2 + .......+m2
n√

1
n (s

2
1 + s22 + ..........+ s2n)

(2)
where n is the number of points, m=ymat-ȳmat where ymat

represents the points of the MATLAB reconstruction and
ȳv is the mean of the overall reconstruction, s=ysol-ȳsol
where ysol represents the points of the solved models and
ȳmat is the mean of the solution.
2. RMS error between VHDL simulation and the solu-
tion of the models denoted as RMSv . It is depicted as in
Equation.(3).

RMSv =
rms(v)

rms(s)
=

√
1
n (v

2
1 + v22 + ........+ v2n√

1
n (s

2
1 + s22 + ........+ s2n)

(3)

where n is the number of points, v=yv-ȳv where yv rep-
resents the points of the VHDL simulation and ȳv is the
mean of the simulation, s = ysol-ȳsol where ysol represents
the points of the solved models and ȳv is the mean of the
VHDL simulation.
3. Coefficient of determination between the MATLAB re-
construction and it’s corresponding solutions. It is denoted
as R2mat. It’s formulation is shown in Equation.(4).

R2
mat = 1− (

SSEmat

SST
) (4)

where
SSEmat = (ysol − ymat)

2 where SSEmat is the sum of
square error between the solved model, ysol and the MAT-
LAB reconstruction, ymat.
SST = (ysol − ȳsol)

2 where SST is the sum of square
in total which is the difference between the solved model,
ysol and its mean ȳsol.
4. Coefficient of determination between VHDL simulation

and it’s corresponding solutions. It is denoted as R2v. It’s
formulation is shown in Equation.(5).

R2
v = 1− (

SSEv

SST
) (5)

where
SSEv = (ysol − yv)

2 where SSEv is the sum of square
error between the solved model, ysol and the MATLAB
reconstruction,yv .
SST = (ysol − ȳsol)

2 where SST is the sum of square in
total which is the difference between the solved model,ysol
and its mean ȳsol.

Table.1 depicts the various values computed for each
cell model using the DDS, the RM and it’s corresponding
floating point implementation in ModelSim. The R2 and
the RMS values of MATLAB and VHDL simulations are
compared with respect to the solutions of each cell mod-
els. For C=4, for both technique, the AP replication is the
worst for the LR I model when compared to other mod-
els. With C=6, the FK waveshape results in the poorest
reconstruction. However, when C=8 both techniques show
a better reconstruction of the AP waveshapes across all the
tested models. Hence with C=8, both RM and DDS offer
good performance metrics and hence we focus on the re-
source usage. Since the floating point implementation is
unsynthesizable on an FPGA, this method is only used for
benchmarking purposes.

Table.2 shows the variation in silicon usage in both

Figure 3. DDS model with different components in terms
of NAND gates.

DDS and RM. The synthesis results are based on 32-bit de-
signs. The RM uses merely the shift and add techniques to
reconstruct the AP. Hence, only a set of adders/subtractors
are involved in it’s synthesis compared to the DDS. It has
been seen that the silicon utilized by RM implementation
is almost 8.5 times smaller than the DDS approach. This
comparison is also justified by the estimation of logic uti-
lization using Cyclone V SoC in Quartus Prime 20.1 Lite.

The detailed illustration of the DDS is depicted in
Figure.3. It comprises of 8x1 MUX with 24-bit addresses
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Table 1. The tabulation the RMS values of VHDL and MATLAB reconstructions on using the ’cos’ function, DDS and
RM method for 4, 6 and 8 Fourier terms

Models FHN model BR model LR I model FK model
Method C R2

mat R2
v RMSmat RMSv R2

mat R2
v RMSmat RMSv R2

mat R2
v RMSmat RMSv R2

mat R2
v RMSmat RMSv

4 94.81 94.81 90.28 90.28 88.40 89.69 90.30 90.34 65.77 68.43 80.67 80.68 83.31 83.04 82.32 82.34
Floating point 6 97.15 97.11 96.08 96.08 91.63 91.52 92.40 92.45 84.77 86.81 92.16 92.19 86.78 86.07 87.44 87.45

implementation 8 98.78 98.77 97.85 97.85 93.10 93.29 96.90 96.94 90.61 91.78 94.63 94.67 94.75 95.06 94.63 94.67
4 94.71 94.80 90.28 90.28 88.39 88.49 90.30 90.31 65.75 63.90 80.68 80.67 83.32 83.30 82.32 82.32

DDS 6 97.03 97.09 96.08 96.08 91.65 91.65 94.43 94.42 84.76 83.28 92.17 92.15 86.79 86.70 87.44 87.44
8 98.74 98.72 97.85 97.85 93.11 93.17 96.91 96.90 90.60 89.42 94.63 94.60 94.76 94.75 95.44 95.44
4 94.76 94.20 90.27 90.25 88.40 89.17 90.30 90.33 65.74 67.21 80.67 80.68 83.30 83.33 82.32 82.34

RM 6 97.07 96.65 96.08 96.06 91.63 91.66 92.41 92.44 84.74 84.97 92.16 92.34 86.70 86.79 87.44 87.45
8 98.76 98.41 97.85 97.83 93.10 93.20 96.90 97.16 90.59 90.86 94.63 94.62 94.75 94.46 95.44 95.45

*C-coefficents, RMSmat, RMSv , R2mat and R2v are in %

Table 2. Synthesis results for the implementation of the
RM using different techniques.

Resource DDS model RM model
Look-Up Table 65536 0

Adder/Subtractor 5712 9792
Multipliers 11872 0

8x1 Multiplexer with counter 225 0
1x8 Demultiplexer 336 0
Total NAND gates 83681 9792

Logic Utilization on Cyclone V 3409 401

and a 3-bit counter. The first 10-bits of the 24-bit ad-
dress of each harmonic is added and sent to a phase shifter.
The new 10-bit value acts as the address to the Look-Up-
Table(LUT). The 16-bit value of the LUT is multiplied by
the corresponding amplitudes for each harmonic and added
together along with the dc values to acquire a 32-bit output.

6. Conclusion

To conclude, the Fourier Series can be implemented in
an FPGA using the DDS and the RM. Moreover, these can
emulate a wide range of AP morphologies. The RM model
offers a much lower hardware footprint compared to the
DDS technique. Thus, the RM model has the potential to
implement more cells, i.e., bigger tissues. The proposed
hardware implementation implies real-time performance
and hence the FS model with the RM technique exhibits
a potential for emulating biological tissues or organs.
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